人工智能求职

1V1定制计划

一站式求职培训服务,求职备战所需的方方面面,
都有我们全程陪跑带你突破重围,斩获理想OFFER!

上岸时间
公司OFFER
学员名称
2025 Summer
Amazon
Mentee Zhao
2025 Summer
Tiktok
Mentee Feng
2025 Summer
Pinterest
Mentee Zhao
2025 Summer
Tencent
Mentee Zhang
2025 Summer
Dropbox
Mentee Yang
2025 Summer
Meta
Mentee Liu
2025 Summer
Amazon
Mentee Song
2025 Summer
Tiktok
Mentee Kang
2025 Summer
Wayfair
Mentee Zhang
2025 Summer
Microsoft
Mentee Wang
2025 Summer
Capital One
Mentee Chen
2025 Summer
Uber
Mentee Hong
2025 Summer
Navan
Mentee Chen
2025 Spring
Google
Mentee Song
2025 Spring
LinkedIn
Mentee Chen
2025 Spring
Amazon
Mentee Wang
2025 Spring
Apple
Mentee Chen
2025 Spring
Tiktok
Mentee Wang
2025 Spring
Signify
Mentee Sun
2025 Spring
Tiktok
Mentee Zeng
2025 Spring
NVIDIA
Mentee Ning
2025 Spring
Adobe
Mentee Zhang
2025 Spring
Hive
Mentee Wang
2025 Spring
ByteDance
Mentee Xiong
2025 Spring
Amazon
Mentee Xu
2025 Spring
Meta
Mentee Zhao
2025 Spring
Apple
Mentee Ma
2025 Spring
Tiktok
Mentee Wang
2025 Spring
CVS
Mentee Gao
2025 Spring
Tencent
Mentee Sun
2025 Spring
HCA Healthcare
Mentee Zhang
2025 Spring
Google
Mentee Li
2025 Spring
Futurewei
Mentee Li
2025 Spring
Microsoft
Mentee Xie
2025 Spring
Microsoft
Mentee Wang
2025 Spring
Tiktok
Mentee Wu
2025 Spring
ByteDance
Mentee Qi
2025 Spring
Amazon
Mentee Lin
2025 Spring
Ant Group
Mentee Dong
2025 Spring
Tiktok
Mentee Wang
2025 Summer
Amazon
Mentee Zhao
2025 Summer
Tiktok
Mentee Feng
2025 Summer
Pinterest
Mentee Zhao
2025 Summer
Tencent
Mentee Zhang
2025 Summer
Dropbox
Mentee Yang
2025 Summer
Meta
Mentee Liu
2025 Summer
Amazon
Mentee Song
2025 Summer
Tiktok
Mentee Kang
2025 Summer
Wayfair
Mentee Zhang
2025 Summer
Microsoft
Mentee Wang
2025 Summer
Capital One
Mentee Chen
2025 Summer
Uber
Mentee Hong
2025 Summer
Navan
Mentee Chen
2025 Spring
Google
Mentee Song
2025 Spring
LinkedIn
Mentee Chen
2025 Spring
Amazon
Mentee Wang
2025 Spring
Apple
Mentee Chen
2025 Spring
Tiktok
Mentee Wang
2025 Spring
Signify
Mentee Sun
2025 Spring
Tiktok
Mentee Zeng
2025 Spring
NVIDIA
Mentee Ning
2025 Spring
Adobe
Mentee Zhang
2025 Spring
Hive
Mentee Wang
2025 Spring
ByteDance
Mentee Xiong
2025 Spring
Amazon
Mentee Xu
2025 Spring
Meta
Mentee Zhao
2025 Spring
Apple
Mentee Ma
2025 Spring
Tiktok
Mentee Wang
2025 Spring
CVS
Mentee Gao
2025 Spring
Tencent
Mentee Sun
2025 Spring
HCA Healthcare
Mentee Zhang
2025 Spring
Google
Mentee Li
2025 Spring
Futurewei
Mentee Li
2025 Spring
Microsoft
Mentee Xie
2025 Spring
Microsoft
Mentee Wang
2025 Spring
Tiktok
Mentee Wu
2025 Spring
ByteDance
Mentee Qi
2025 Spring
Amazon
Mentee Lin
2025 Spring
Ant Group
Mentee Dong
2025 Spring
Tiktok
Mentee Wang
ALLinOne定制计划
汇聚1300+名企面试官资源,累计助力8000+学员斩获大厂OFFER!业界资深导师1V1定制化辅导。
针对学生/跳槽/转行不同人群定制化求职方案,用实战经验打通求职晋升快车道,直至拿到全职OFFER为止。
适合人群
适合Applied/Research Scientist, Machine Learning Engineer, AI Infra, Software Engineer(ML/AI Track), AI Engineer等。
无论是在校学生、应届毕业生,还是寻求跳槽或转行的在职人士,我们都提供定制化的面试辅导。
均已加入本计划
全面评估 深度规划: 根据同学简历背景、知识储备、技能水平、理清求职目标和方向,制定定制化求职方案。
直播授课: 随时随地,在线互动,及时反馈。帮助求职者快速掌握求职市场的最新动态及实战技能。
简历精修: 针对求职者的背景和目标岗位,由大厂导师1v1进行简历优化,确保简历内容突出个人优势、符合企业偏好标准。
模拟面试: 精准匹配大厂在职面试官mock,还原真实面试流程及面试要点,现场实时反馈,帮你调整至面试最佳状态。
专群辅导&资料收集: 学员专属服务群,求职问题解答、小道消息速递,岗位信息搜集、面试资料整理,全程陪伴、省心省力!
名企内推: 一手内推资源,与一线大厂资深面试官/HR深度合作,学员独享专属内推通道,简历投递更快更准。
十年行业沉淀!8000+ OFFER,见证职场筑梦!
加入AllinOne计划,开启你的旅程!
直通硅谷OFFER榜
上岸时间
公司OFFER
学员名称
Review
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Mentee Peng
Mentee Zhao
Mentee Mao
Mentee Wang
Mentee Zhou
Mentee Xu
Mentee Chen
Mentee Yang
Mentee Qi
Mentee Tu
Mentee You
Mentee Li
Mentee Ji
Mentee Xu
Mentee Huang
/

课程大纲

基础-高阶系统学习强化,构建知识体系理清求职道路
夯实基础 | 认识求职
根据VIP老师制定的学习计划,通过视频资料、文字资料进行学习,助教老师全程辅导,为VIP授课奠定基础,使一对一直播授课更加高效。
全面评估 | 知己知彼
根据学员基础学习情况,对学员背景知识、综合能力等进行全面评估,从而深入了解学员真实水平。
匹配导师前,详细讲解人工智能不同细分方向的常用工业技术栈,岗位职责,未来发展前景,job marketing的情况等,帮助同学确认未来细分方向选择。
深度规划 | 理清求职
根据学员背景知识掌握程度,结合学员未来求职目标,帮助学员规划求职方向、求职准备时间安排及求职准备内容。
定制辅导 | 全面提升
根据导师1v1评估结果,为学员制定具体学习计划,从实习项目背景提升、面试知识及技能、面试技巧及实战等多方面进行全方位一对一辅导。
导师带领学员,通过1v1形式辅导,打造工业属性项目,提升简历竞争力。
出谋划策 | 进击面试
结合学员求职准备进阶情况,查缺补漏,为学员制定面试冲刺阶段的备战策略。
根据学员获得的公司面试机会,利用智能化系统,针对5万+份人工智能方向面经进行大数据分析,统计抽取对应公司的面试高频题,大大增加冲刺阶段的押题概率!
巩固复习 | 成果验收
实战押题,查缺补漏,全线Ready,拿下OFFER!

实习项目

头部大厂导师手把手带做定制工业级实习项目,技术栈及业务场景紧跟行业趋势!
Vision Language Pretraining for Fine Grained Product Retrieval

Built a dual encoder vision language model using CLIP style contrastive learning to match product images and textual metadata for large scale e commerce retrieval.

Pretrained on 120K+ image text pairs with ViT B/32 as vision encoder and DistilBERT as text encoder, improving Recall@10 by +9.6% over baseline ResNet + BoW.

Implemented in-batch hard negative mining and momentum queue sampling to enhance discrimination between visually similar products (e.g., sneakers vs. running shoes).

Applied data deduplication and caption cleaning pipelines with Spark NLP and OpenCLIP tokenizer, improving text image alignment accuracy by 6.3%.

Fine-tuned on curated human labeled product triplets and category split validation sets, achieving +5.3% NDCG@10.

Deployed the retrieval model via FAISS and TorchServe, serving 500K+ embeddings at sub 25 ms latency.

Integrated new retrieval pipeline into personalized recommendation stack, resulting in a +3.1% CTR uplift in A/B testing.

Monitored training using Weights & Biases, tracking loss curves, recall metrics, and embedding drift for retraining triggers.

Prompt Optimization for Task Specific LLMs using Reinforcement Learning

Developed a reinforcement learning framework for prompt tuning of task-specific LLMs (e.g., summarization, chain-of-thought QA), enabling response quality optimization without full finetuning.

Used OpenAI GPT-3.5 and Mistral-7B as base LLMs, combined with RLHF-style reward modeling pipeline to score outputs on relevance and factuality.

Built reward model using BERTScore, GPT-4 judgment, and task-specific heuristics (e.g., correct entity match for QA).

Applied PPO (Proximal Policy Optimization) with low-rank adapter (LoRA) layers to update prompts and control tokens.

Achieved +11.2% factual consistency and -7.4% hallucination rate on internal summarization benchmark compared to vanilla prompt.

Deployed the optimized prompts into prompt-template registry used by internal RAG systems, improving downstream response pass@1 by 9.6%.

Monitored prompt performance drift across live production logs using Langfuse and custom OpenTelemetry pipeline.

Coordinated with applied scientists to roll out prompt variants in staged A/B buckets, with automated fallback to baseline under degradation.

Multi-Modal Perception Fusion for Autonomous Driving

Developed a sensor fusion model combining LiDAR point cloud, camera images, and radar signals to improve 3D object detection accuracy in urban driving scenarios.

Applied PointPillars + ResNet-101 architecture with multi-scale attention fusion, improving mean Average Precision (mAP) by 14.6% on the nuScenes benchmark.

Built efficient data preprocessing pipeline using ROS2 + Open3D to align and voxelize sensor inputs, reducing preprocessing latency by 38%.

Integrated learned embeddings into a downstream trajectory prediction module, achieving smoother path planning with 23% fewer collision violations in simulation.

Implemented real-time model serving using TensorRT + Nvidia Triton Inference Server, enabling sub-50ms inference latency on Jetson Xavier.

Collaborated with simulation engineers to run 10,000+ scenario tests using CARLA, validating model robustness under fog, night, and occlusion conditions.

Supported deployment on a test fleet, contributing to a 22% reduction in disengagements per 1,000 miles on urban routes.

Real-Time Transaction Fraud Detection with Streaming ML Pipeline

Built a feature-rich real-time fraud detection model using LightGBM and XGBoost, optimized for low-latency scoring on live payment streams.

Developed high-throughput feature engineering pipeline on Apache Flink, extracting device, geo, merchant, and behavioral signals with 3-second SLA.

Introduced feature freshness validation layer to prevent leakage in model inputs; reduced false positives from data staleness by 22%.

Trained on 250M historical labeled transactions with class imbalance handling using cost-sensitive learning and SMOTE variants.

Achieved +4.7% uplift in ROC-AUC and ~15% reduction in fraud loss rate compared to existing rule-based + ensemble baseline.

Deployed model using ONNX + FastAPI and served via Kafka stream integrated with company’s payment gateway.

Built shadow-mode monitor to compare predictions of current vs. new model in production, ensuring safe cutover.

Integrated feedback loop from chargeback events to enable retraining every 2 days via Airflow-managed pipeline.

Coordinated with security engineering team to conduct adversarial evaluation using simulated fraud replay scenarios.

Large-Scale Retrieval and Reranking Stack for Search Relevance Optimization

Developed a dual-stage search stack combining bi-encoder retrieval (DPR) with cross-encoder reranking (BERT), powering semantic search across 200M+ documents.

Used HuggingFace Transformers for fine-tuning on in-domain QA pairs and click data; achieved +12.4% MRR@10 improvement over BM25 baseline.

Engineered offline training pipelines with Petastorm + PySpark, handling 5B+ token corpus from user logs and documentation.

Deployed FAISS-based vector store sharded across 8 servers with dynamic reloading and per-language embedding partitioning.

Integrated click feedback and dwell-time weighted relevance signals into reranker training set with online A/B test feedback.

Served retrieval layer via Triton Inference Server and reranking via ONNX Runtime, maintaining <150ms P95 latency for combined stack.

Built diagnostic tool to inspect false positives/negatives by comparing attention maps across reranker layers.

A/B testing against production stack showed +9.7% uplift in user query satisfaction score and +6.2% CTR improvement on search results page.

精英导师库
汇聚1300+
在职面试官
直通硅谷导师筛选机制
均为4年及以上从业经验的
Senior级大厂在职面试官 ,而想要加入导师库,只满足这3个条件还远远不够。
如同同学求职一般,我们的导师也会历经多达5轮的“面试考核”,通过背景经历、技术能力、面试经验、导师sense等维度的层层筛选下,入选率仅10%。有导师戏称,“并不比一次大厂面试简单”。
为了保证导师库水准,我们从未因考核成本而降低标准。辅导内容随着科技届趋势不断迭代更新,对导师的培养和考核标准也会只增不减。
所有导师皆任职于
全球各大一线大厂
定制化课程 随时开启
服务至成功上岸为止
  • 专属导师1对1直播授课
  • 精准匹配头部公司在职面试官
  • 成功签约全职OFFER为止
  • 无OFFER承诺退款
  • 简历项目双修双审
  • 一线大厂List,在职员工内推
  • 附赠真实实习项目
扫描下方二维码
联系小助手
咨询课程与报名
常见问题
导师是如何进行筛选的?
如果课程中跟不上老师的进度怎么办?
什么时间上这门课程比较合适?
导师都是来自哪里?
课程中使用什么编程语言教学?
无OFFER退款是如何保障的?

直通硅谷成立于2015年3月,由北大计算机系师兄联合MIT、前百度网络科技产品经理、Harvard高级学者、香港上市公司联席董事共同创立,心之所向,是壮大全球华人力量。 凭借在求职辅导中积累的丰富经验,我们不断研发顺应科技界求职趋势的学练结合课程,组建富有实战经验的国内外名企导师团队,已成功帮助超过8000+学员进入全球一线大厂。

快速获取最新求职资讯
二维码
Copyright © 2013-2024      辽ICP备16012078号-2