数据方向求职

1V1定制计划

一站式求职培训服务,求职备战所需的方方面面,
都有我们全程陪跑带你突破重围,斩获理想OFFER!

上岸时间
公司OFFER
学员名称
2025 Summer
Goldman Sachs
Mentee Deng
2025 Summer
Amazon
Mentee Ping
2025 Summer
J.P.Morgan
Mentee Wang
2025 Summer
Meta
Mentee Song
2025 Summer
Maximus
Mentee Xiao
2025 Summer
Google
Mentee Lin
2025 Summer
Synopsis
Mentee Sun
2025 Summer
Goldman Sachs
Mentee Wang
2025 Summer
Microsoft
Mentee Zou
2025 Summer
Adobe
Mentee Shen
2025 Summer
Bosch
Mentee Wu
2025 Summer
Google
Mentee Li
2025 Summer
Capital One
Mentee Zhang
2025 Spring
Tiktok
Mentee Ping
2025 Spring
Amazon
Mentee Chen
2025 Spring
Google
Mentee Wang
2025 Spring
Amazon
Mentee Li
2025 Spring
Goldman Sachs
Mentee Qin
2025 Spring
Microsoft
Mentee Song
2025 Spring
J.P.Morgan
Mentee Yang
2025 Spring
Thumbtack
Mentee Qi
2025 Spring
Meta
Mentee Zhao
2025 Spring
Amazon
Mentee Wang
2025 Spring
Saatva
Mentee Sun
2025 Spring
Microsoft
Mentee Yang
2025 Spring
IDX
Mentee Run
2025 Spring
Apple
Mentee Zhao
2025 Spring
Goldman Sachs
Mentee Zhao
2025 Spring
Amazon
Mentee Zhang
2025 Spring
Amazon
Mentee Mu
2025 Spring
Navan
Mentee Li
2025 Spring
Tiktok
Mentee Xu
2025 Spring
CVS
Mentee Liu
2025 Spring
Capital One
Mentee Wang
2025 Spring
Apple
Mentee Jing
2025 Spring
Google
Mentee Chen
2025 Spring
Microsoft
Mentee Luo
2025 Spring
eBay
Mentee Zhao
2025 Spring
Capital One
Mentee Chan
2025 Spring
J.P.Morgan
Mentee Zou
2025 Summer
Goldman Sachs
Mentee Deng
2025 Summer
Amazon
Mentee Ping
2025 Summer
J.P.Morgan
Mentee Wang
2025 Summer
Meta
Mentee Song
2025 Summer
Maximus
Mentee Xiao
2025 Summer
Google
Mentee Lin
2025 Summer
Synopsis
Mentee Sun
2025 Summer
Goldman Sachs
Mentee Wang
2025 Summer
Microsoft
Mentee Zou
2025 Summer
Adobe
Mentee Shen
2025 Summer
Bosch
Mentee Wu
2025 Summer
Google
Mentee Li
2025 Summer
Capital One
Mentee Zhang
2025 Spring
Tiktok
Mentee Ping
2025 Spring
Amazon
Mentee Chen
2025 Spring
Google
Mentee Wang
2025 Spring
Amazon
Mentee Li
2025 Spring
Goldman Sachs
Mentee Qin
2025 Spring
Microsoft
Mentee Song
2025 Spring
J.P.Morgan
Mentee Yang
2025 Spring
Thumbtack
Mentee Qi
2025 Spring
Meta
Mentee Zhao
2025 Spring
Amazon
Mentee Wang
2025 Spring
Saatva
Mentee Sun
2025 Spring
Microsoft
Mentee Yang
2025 Spring
IDX
Mentee Run
2025 Spring
Apple
Mentee Zhao
2025 Spring
Goldman Sachs
Mentee Zhao
2025 Spring
Amazon
Mentee Zhang
2025 Spring
Amazon
Mentee Mu
2025 Spring
Navan
Mentee Li
2025 Spring
Tiktok
Mentee Xu
2025 Spring
CVS
Mentee Liu
2025 Spring
Capital One
Mentee Wang
2025 Spring
Apple
Mentee Jing
2025 Spring
Google
Mentee Chen
2025 Spring
Microsoft
Mentee Luo
2025 Spring
eBay
Mentee Zhao
2025 Spring
Capital One
Mentee Chan
2025 Spring
J.P.Morgan
Mentee Zou
ALLinOne定制计划
汇聚1300+名企面试官资源,累计助力8000+学员斩获大厂OFFER!业界资深导师1V1定制化辅导。
针对学生/跳槽/转行不同人群定制化求职方案,用实战经验打通求职晋升快车道,直至拿到全职OFFER为止。
适合人群
适合从事Data Scientist, Modeling DS偏AI, Data Engineer, Data Analyst, Business Analyst等数据方向的求职者。
无论是在校学生、应届毕业生,还是寻求跳槽或转行的在职人士,我们都提供定制化的面试辅导。
均已加入本计划
全面评估 深度规划: 根据同学简历背景、知识储备、技能水平、理清求职目标和方向,制定定制化求职方案。
直播授课: 随时随地,在线互动,及时反馈。帮助求职者快速掌握求职市场的最新动态及实战技能。
简历精修: 针对求职者的背景和目标岗位,由大厂导师1v1进行简历优化,确保简历内容突出个人优势、符合企业偏好标准。
模拟面试: 精准匹配大厂在职面试官mock,还原真实面试流程及面试要点,现场实时反馈,帮你调整至面试最佳状态。
专群辅导&资料收集: 学员专属服务群,求职问题解答、小道消息速递,岗位信息搜集、面试资料整理,全程陪伴、省心省力!
名企内推: 一手内推资源,与一线大厂资深面试官/HR深度合作,学员独享专属内推通道,简历投递更快更准。
十年行业沉淀!8000+ OFFER,见证职场筑梦!
加入AllinOne计划,开启你的旅程!
直通硅谷OFFER榜
数据方向
上岸时间
公司OFFER
学员名称
Review
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Season 2025
Mentee Xu
Mentee Chen
Mentee Liu
Mentee Qi
Mentee Tu
Mentee Xie
Mentee Liu
Mentee Jin
Mentee Li
Mentee Wu
Mentee Xiao
Mentee Wang
Mentee Wang
Mentee Zhang
Mentee Chen
/
课程大纲
夯实基础 | 认识求职
根据VIP老师制定的学习计划,通过视频资料、文字资料进行学习,助教老师全程辅导,为VIP授课奠定基础,使一对一直播授课更加高效。
全面评估 | 知己知彼
根据学员基础学习情况,对学员背景知识、综合能力等进行全面评估,从而深入了解学员真实水平。
匹配导师前,详细讲解Data不同细分方向的常用工业技术栈,岗位职责,未来发展前景,job marketing的情况等,帮助同学确认未来细分方向选择。
深度规划 | 理清求职
根据学员背景知识掌握程度,结合学员未来求职目标,帮助学员规划求职方向、求职准备时间安排及求职准备内容。
定制辅导 | 全面提升
根据导师1v1评估结果,为学员制定具体学习计划,从实习项目背景提升、面试知识及技能、面试技巧及实战等多方面进行全方位一对一辅导。
导师带领学员,通过1v1形式辅导,打造工业属性项目,提升简历竞争力。
出谋划策 | 进击面试
结合学员求职准备进阶情况,查缺补漏,为学员制定面试冲刺阶段的备战策略。
根据学员获得的公司面试机会,利用智能化系统,针对5万+份DATA方向面经进行大数据分析,统计抽取对应公司的面试高频题,大大增加冲刺阶段的押题概率!
巩固复习 | 成果验收
实战押题,查缺补漏,全线Ready,拿下OFFER!

实习项目

头部大厂导师手把手带做定制工业级实习项目,技术栈及业务场景紧跟行业趋势!
Transaction Risks Detection and Analysis

Fraud investigation of employees’ behaviors on imbalanced transaction data using Python, SQL, R and RapidMiner

Extracted~10TB data and performed texts vectorization with word2vee model

Explored effects of bootstrap resampling,synthetic minority oversampling (SMOTE) and cluster centroid sampling algorithms on logistic regression and decision tree (publication under review by International Journal of Managing Information Technology)

Implemented variable clustering and principal component analysis (PCA) to reduce data dimensionality

Displayed the topology of the high-dimensional data using topological data

analysis (TDA)

Created new features based on results from TDA and clustering analysis that improved accuracy by 0.05

Explored the characteristics of the fraud employees using k-means clustering analysis

Measured the effectiveness of the proposed model using Kolmogorov-Smirnov test, lift charts and cumulative gains charts.

Customer Behavior Patterns Analysis

Customer usage patterns and anomalous activities detection using Python, SQL

Analyzed over 3GB workforce management data to identify customer usage patterns and anomalous activities using advanced SQL Querying and Python.

Performed exploratory data analysis on numerical, categorical and time series data using Matplotlib and Seaborn.

Constructed multivariance Time Series Clustering model, DTW with Hierarchical clustering, on 120 features to group customers, segment market and described the clustering centroid by DBA (DTW Barycenter Averaging).

Trained both Anomaly Detection Models including isolation forest, robust PCA and Regression Models including linear models, random forest to build customer’ anomalous activities alert system.

Built dashboards to describe the customer’s usage activities via Tableau and weekly reported analysis results to the team and manager.

Big Data Streaming & Processing

Assembled an Apache Flume service on a private cloud infrastructure to ingest100+TB/day log files from cloud computing applications and dispatch tagged log events to downstream services all in real-time

Used Kafka as a primary data storage solution to hold short term log data reducing data retrieval latency from 3s to 0.5s

Used Hadoop Distributed File System as a secondary data storage solution to persist PB-level historical log data

Built an alerting module using Spark Streaming to catch error logs from Kafka and notify the internal management system of cloud computing applications achieving a total latency of less than ls

Built an analysis module using Spark Streaming to consume and aggregate log data based on severity levels and generate health reports of all cloud computing applications on a daily basis, improving 5x efficiency.

Computer Vision & Deep Learning, Face Image Generator

Performed data crawling using Python to collect 114687 images and trained, built a Faster-RCNN with Wider Face dataset to detect and extract 94% faces using PyTorch.

Trained and applied a SRGAN model to augment and standardize picture resolution from less than 100x100 to 256x256 using PyTorch.

Implemented, trained and applied an 8-layer StyleGAN with PyTorch framework to generate dynamic style of cartoon faces according to input image and commands

Added effects with mixing the styles of the generated images by controlling the latent model spaces

Implemented a diffusion model(ddpm)and trained with 10881 face images.

Constructed GPU infrastructure and implemented parallel computation to speed up 12x run-time performance.

NLP & Deep Learning, Text Understanding

Established an NLP system to summarize the text through TensorFlow in the environment built by Nvidia Docker.

Analyzed and processed 2TB text summarization datasets from THUCnews. LCSTS.CSL news headlinescontexts and judicial summaries by NLTK

Benchmarked the performance of Point-Generator, WoBERT, Nezha, and T5 on the above datasets to obtain proper title/ abstract, guideline and summaries.

Applied BERT WoBERT to improve prediction accuracy by 5.6% and 4.5% respectively

Expedited the inference of these transformer-based models by1.55xfaster via Turbo Transformer

Accelerated the modeling run-time performance by 8xwith parallel computation using CUDA based on GPUs.

Applied the Bert-of-Theseus method to distill WoBERT shrank model size to 50%.

精英导师库
汇聚1300+
在职面试官
直通硅谷导师筛选机制
均为4年及以上从业经验的
Senior级大厂在职面试官 ,而想要加入导师库,只满足这3个条件还远远不够。
如同同学求职一般,我们的导师也会历经多达5轮的“面试考核”,通过背景经历、技术能力、面试经验、导师sense等维度的层层筛选下,入选率仅10%。有导师戏称,“并不比一次大厂面试简单”。
为了保证导师库水准,我们从未因考核成本而降低标准。辅导内容随着科技届趋势不断迭代更新,对导师的培养和考核标准也会只增不减。
所有导师皆任职于
全球各大一线大厂
定制化课程 随时开启
服务至成功上岸为止
  • 专属导师1对1直播授课
  • 精准匹配头部公司在职面试官
  • 成功签约全职OFFER为止
  • 无OFFER承诺退款
  • 简历项目双修双审
  • 一线大厂List,在职员工内推
  • 附赠真实实习项目
扫描下方二维码
联系小助手
咨询课程与报名
常见问题
导师是如何进行筛选的?
如果课程中跟不上老师的进度怎么办?
什么时间上这门课程比较合适?
无OFFER退款是如何保障的?
1v1求职定制计划与优培20计划有何区别?
导师都是来自哪里?
课程中使用什么编程语言教学?

直通硅谷成立于2015年3月,由北大计算机系师兄联合MIT、前百度网络科技产品经理、Harvard高级学者、香港上市公司联席董事共同创立,心之所向,是壮大全球华人力量。 凭借在求职辅导中积累的丰富经验,我们不断研发顺应科技界求职趋势的学练结合课程,组建富有实战经验的国内外名企导师团队,已成功帮助超过8000+学员进入全球一线大厂。

快速获取最新求职资讯
二维码
Copyright © 2013-2024      辽ICP备16012078号-2